ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2406.01189
86
1
v1v2v3 (latest)

MultiMax: Sparse and Multi-Modal Attention Learning

3 June 2024
Yuxuan Zhou
Mario Fritz
Margret Keuper
ArXiv (abs)PDFHTML
Abstract

SoftMax is a ubiquitous ingredient of modern machine learning algorithms. It maps an input vector onto a probability simplex and reweights the input by concentrating the probability mass at large entries. Yet, as a smooth approximation to the Argmax function, a significant amount of probability mass is distributed to other, residual entries, leading to poor interpretability and noise. Although sparsity can be achieved by a family of SoftMax variants, they often require an alternative loss function and do not preserve multi-modality. We show that this trade-off between multi-modality and sparsity limits the expressivity of SoftMax as well as its variants. We provide a solution to this tension between objectives by proposing a piece-wise differentiable function, termed MultiMax, which adaptively modulates the output distribution according to input entry range. Through comprehensive analysis and evaluation, we show that MultiMax successfully produces a distribution that supresses irrelevant entries while preserving multimodality, with benefits in image classification, language modeling and machine translation. The code is available at https://github.com/ZhouYuxuanYX/MultiMax.

View on arXiv
Comments on this paper