ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2406.01352
  4. Cited By
Position: An Inner Interpretability Framework for AI Inspired by Lessons
  from Cognitive Neuroscience

Position: An Inner Interpretability Framework for AI Inspired by Lessons from Cognitive Neuroscience

3 June 2024
Martina G. Vilas
Federico Adolfi
David Poeppel
Gemma Roig
ArXivPDFHTML

Papers citing "Position: An Inner Interpretability Framework for AI Inspired by Lessons from Cognitive Neuroscience"

10 / 10 papers shown
Title
Uncovering Intermediate Variables in Transformers using Circuit Probing
Uncovering Intermediate Variables in Transformers using Circuit Probing
Michael A. Lepori
Thomas Serre
Ellie Pavlick
49
7
0
07 Nov 2023
Characterizing Mechanisms for Factual Recall in Language Models
Characterizing Mechanisms for Factual Recall in Language Models
Qinan Yu
Jack Merullo
Ellie Pavlick
KELM
24
10
0
24 Oct 2023
Finding Neurons in a Haystack: Case Studies with Sparse Probing
Finding Neurons in a Haystack: Case Studies with Sparse Probing
Wes Gurnee
Neel Nanda
Matthew Pauly
Katherine Harvey
Dmitrii Troitskii
Dimitris Bertsimas
MILM
150
170
0
02 May 2023
Dissecting Recall of Factual Associations in Auto-Regressive Language
  Models
Dissecting Recall of Factual Associations in Auto-Regressive Language Models
Mor Geva
Jasmijn Bastings
Katja Filippova
Amir Globerson
KELM
180
152
0
28 Apr 2023
Interpretability in the Wild: a Circuit for Indirect Object
  Identification in GPT-2 small
Interpretability in the Wild: a Circuit for Indirect Object Identification in GPT-2 small
Kevin Wang
Alexandre Variengien
Arthur Conmy
Buck Shlegeris
Jacob Steinhardt
205
486
0
01 Nov 2022
The Debate Over Understanding in AI's Large Language Models
The Debate Over Understanding in AI's Large Language Models
Melanie Mitchell
D. Krakauer
ELM
62
196
0
14 Oct 2022
In-context Learning and Induction Heads
In-context Learning and Induction Heads
Catherine Olsson
Nelson Elhage
Neel Nanda
Nicholas Joseph
Nova Dassarma
...
Tom B. Brown
Jack Clark
Jared Kaplan
Sam McCandlish
C. Olah
232
453
0
24 Sep 2022
Toy Models of Superposition
Toy Models of Superposition
Nelson Elhage
Tristan Hume
Catherine Olsson
Nicholas Schiefer
T. Henighan
...
Sam McCandlish
Jared Kaplan
Dario Amodei
Martin Wattenberg
C. Olah
AAML
MILM
117
183
0
21 Sep 2022
Natural Language Descriptions of Deep Visual Features
Natural Language Descriptions of Deep Visual Features
Evan Hernandez
Sarah Schwettmann
David Bau
Teona Bagashvili
Antonio Torralba
Jacob Andreas
MILM
191
92
0
26 Jan 2022
Towards A Rigorous Science of Interpretable Machine Learning
Towards A Rigorous Science of Interpretable Machine Learning
Finale Doshi-Velez
Been Kim
XAI
FaML
219
2,098
0
28 Feb 2017
1