ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2406.01468
30
2

Understanding Token Probability Encoding in Output Embeddings

3 June 2024
Hakaze Cho
Yoshihiro Sakai
Kenshiro Tanaka
Mariko Kato
Naoya Inoue
ArXivPDFHTML
Abstract

In this paper, we investigate the output token probability information in the output embedding of language models. We provide an approximate common log-linear encoding of output token probabilities within the output embedding vectors and demonstrate that it is accurate and sparse when the output space is large and output logits are concentrated. Based on such findings, we edit the encoding in output embedding to modify the output probability distribution accurately. Moreover, the sparsity we find in output probability encoding suggests that a large number of dimensions in the output embedding do not contribute to causal language modeling. Therefore, we attempt to delete the output-unrelated dimensions and find more than 30% of the dimensions can be deleted without significant movement in output distribution and degeneration on sequence generation. Additionally, in training dynamics, we use such encoding as a probe and find that the output embeddings capture token frequency information in early steps, even before an obvious convergence starts.

View on arXiv
Comments on this paper