ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2406.01618
11
1

FinEmbedDiff: A Cost-Effective Approach of Classifying Financial Documents with Vector Sampling using Multi-modal Embedding Models

28 May 2024
Anjanava Biswas
Wrick Talukdar
ArXivPDFHTML
Abstract

Accurate classification of multi-modal financial documents, containing text, tables, charts, and images, is crucial but challenging. Traditional text-based approaches often fail to capture the complex multi-modal nature of these documents. We propose FinEmbedDiff, a cost-effective vector sampling method that leverages pre-trained multi-modal embedding models to classify financial documents. Our approach generates multi-modal embedding vectors for documents, and compares new documents with pre-computed class embeddings using vector similarity measures. Evaluated on a large dataset, FinEmbedDiff achieves competitive classification accuracy compared to state-of-the-art baselines while significantly reducing computational costs. The method exhibits strong generalization capabilities, making it a practical and scalable solution for real-world financial applications.

View on arXiv
Comments on this paper