ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2406.02362
37
2

Temporal Graph Rewiring with Expander Graphs

4 June 2024
Katarina Petrović
Shenyang Huang
Farimah Poursafaei
Petar Velickovic
    AI4CE
ArXivPDFHTML
Abstract

Evolving relations in real-world networks are often modelled by temporal graphs. Graph rewiring techniques have been utilised on Graph Neural Networks (GNNs) to improve expressiveness and increase model performance. In this work, we propose Temporal Graph Rewiring (TGR), the first approach for graph rewiring on temporal graphs. TGR enables communication between temporally distant nodes in a continuous time dynamic graph by utilising expander graph propagation to construct a message passing highway for message passing between distant nodes. Expander graphs are suitable candidates for rewiring as they help overcome the oversquashing problem often observed in GNNs. On the public tgbl-wiki benchmark, we show that TGR improves the performance of a widely used TGN model by a significant margin. Our code repository is accessible at https://github.com/kpetrovicc/TGR.git .

View on arXiv
Comments on this paper