ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2406.02925
29
2

Task Arithmetic can Mitigate Synthetic-to-Real Gap in Automatic Speech Recognition

5 June 2024
Hsuan Su
Hua Farn
Fan-Yun Sun
Shang-Tse Chen
Hung-yi Lee
    MoMe
ArXivPDFHTML
Abstract

Synthetic data is widely used in speech recognition due to the availability of text-to-speech models, which facilitate adapting models to previously unseen text domains. However, existing methods suffer in performance when they fine-tune an automatic speech recognition (ASR) model on synthetic data as they suffer from the distributional shift commonly referred to as the synthetic-to-real gap. In this paper, we find that task vector arithmetic is effective at mitigating this gap. Our proposed method, SYN2REAL task vector, shows an average improvement of 10.03\% improvement in word error rate over baselines on the SLURP dataset. Additionally, we show that an average of SYN2REAL task vectors, when we have real speeches from multiple different domains, can further adapt the original ASR model to perform better on the target text domain.

View on arXiv
Comments on this paper