ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2406.03662
23
15

The Missing Curve Detectors of InceptionV1: Applying Sparse Autoencoders to InceptionV1 Early Vision

6 June 2024
Liv Gorton
ArXivPDFHTML
Abstract

Recent work on sparse autoencoders (SAEs) has shown promise in extracting interpretable features from neural networks and addressing challenges with polysemantic neurons caused by superposition. In this paper, we apply SAEs to the early vision layers of InceptionV1, a well-studied convolutional neural network, with a focus on curve detectors. Our results demonstrate that SAEs can uncover new interpretable features not apparent from examining individual neurons, including additional curve detectors that fill in previous gaps. We also find that SAEs can decompose some polysemantic neurons into more monosemantic constituent features. These findings suggest SAEs are a valuable tool for understanding InceptionV1, and convolutional neural networks more generally.

View on arXiv
Comments on this paper