ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2406.03714
26
4

Retrieval Augmented Generation in Prompt-based Text-to-Speech Synthesis with Context-Aware Contrastive Language-Audio Pretraining

6 June 2024
Jinlong Xue
Yayue Deng
Yingming Gao
Ya Li
    RALM
    VLM
ArXivPDFHTML
Abstract

Recent prompt-based text-to-speech (TTS) models can clone an unseen speaker using only a short speech prompt. They leverage a strong in-context ability to mimic the speech prompts, including speaker style, prosody, and emotion. Therefore, the selection of a speech prompt greatly influences the generated speech, akin to the importance of a prompt in large language models (LLMs). However, current prompt-based TTS models choose the speech prompt manually or simply at random. Hence, in this paper, we adapt retrieval augmented generation (RAG) from LLMs to prompt-based TTS. Unlike traditional RAG methods, we additionally consider contextual information during the retrieval process and present a Context-Aware Contrastive Language-Audio Pre-training (CA-CLAP) model to extract context-aware, style-related features. The objective and subjective evaluations demonstrate that our proposed RAG method outperforms baselines, and our CA-CLAP achieves better results than text-only retrieval methods.

View on arXiv
Comments on this paper