129
v1v2 (latest)

XL-HeadTags: Leveraging Multimodal Retrieval Augmentation for the Multilingual Generation of News Headlines and Tags

Abstract

Millions of news articles published online daily can overwhelm readers. Headlines and entity (topic) tags are essential for guiding readers to decide if the content is worth their time. While headline generation has been extensively studied, tag generation remains largely unexplored, yet it offers readers better access to topics of interest. The need for conciseness in capturing readers' attention necessitates improved content selection strategies for identifying salient and relevant segments within lengthy articles, thereby guiding language models effectively. To address this, we propose to leverage auxiliary information such as images and captions embedded in the articles to retrieve relevant sentences and utilize instruction tuning with variations to generate both headlines and tags for news articles in a multilingual context. To make use of the auxiliary information, we have compiled a dataset named XL-HeadTags, which includes 20 languages across 6 diverse language families. Through extensive evaluation, we demonstrate the effectiveness of our plug-and-play multimodal-multilingual retrievers for both tasks. Additionally, we have developed a suite of tools for processing and evaluating multilingual texts, significantly contributing to the research community by enabling more accurate and efficient analysis across languages.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.