ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2406.03882
18
2

Spontaneous Speech-Based Suicide Risk Detection Using Whisper and Large Language Models

6 June 2024
Ziyun Cui
Chang Lei
Wen Wu
Yinan Duan
Diyang Qu
Ji Wu
Runsen Chen
Chao Zhang
ArXivPDFHTML
Abstract

The early detection of suicide risk is important since it enables the intervention to prevent potential suicide attempts. This paper studies the automatic detection of suicide risk based on spontaneous speech from adolescents, and collects a Mandarin dataset with 15 hours of suicide speech from more than a thousand adolescents aged from ten to eighteen for our experiments. To leverage the diverse acoustic and linguistic features embedded in spontaneous speech, both the Whisper speech model and textual large language models (LLMs) are used for suicide risk detection. Both all-parameter finetuning and parameter-efficient finetuning approaches are used to adapt the pre-trained models for suicide risk detection, and multiple audio-text fusion approaches are evaluated to combine the representations of Whisper and the LLM. The proposed system achieves a detection accuracy of 0.807 and an F1-score of 0.846 on the test set with 119 subjects, indicating promising potential for real suicide risk detection applications.

View on arXiv
Comments on this paper