ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2406.06423
24
0

Hybrid Video Anomaly Detection for Anomalous Scenarios in Autonomous Driving

10 June 2024
Daniel Bogdoll
Jan Imhof
Tim Joseph
J. Marius Zöllner
J. Marius Zöllner
ArXivPDFHTML
Abstract

In autonomous driving, the most challenging scenarios can only be detected within their temporal context. Most video anomaly detection approaches focus either on surveillance or traffic accidents, which are only a subfield of autonomous driving. We present HF2^22-VADAD_{AD}AD​, a variation of the HF2^22-VAD surveillance video anomaly detection method for autonomous driving. We learn a representation of normality from a vehicle's ego perspective and evaluate pixel-wise anomaly detections in rare and critical scenarios.

View on arXiv
@article{bogdoll2025_2406.06423,
  title={ Hybrid Video Anomaly Detection for Anomalous Scenarios in Autonomous Driving },
  author={ Daniel Bogdoll and Jan Imhof and Tim Joseph and Svetlana Pavlitska and J. Marius Zöllner },
  journal={arXiv preprint arXiv:2406.06423},
  year={ 2025 }
}
Comments on this paper