ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2406.08203
20
3

LAFMA: A Latent Flow Matching Model for Text-to-Audio Generation

12 June 2024
Wenhao Guan
K. Wang
Wangjin Zhou
Yang Wang
Feng Deng
Hui Wang
Lin Li
Q. Hong
Yong Qin
    DiffM
ArXivPDFHTML
Abstract

Recently, the application of diffusion models has facilitated the significant development of speech and audio generation. Nevertheless, the quality of samples generated by diffusion models still needs improvement. And the effectiveness of the method is accompanied by the extensive number of sampling steps, leading to an extended synthesis time necessary for generating high-quality audio. Previous Text-to-Audio (TTA) methods mostly used diffusion models in the latent space for audio generation. In this paper, we explore the integration of the Flow Matching (FM) model into the audio latent space for audio generation. The FM is an alternative simulation-free method that trains continuous normalization flows (CNF) based on regressing vector fields. We demonstrate that our model significantly enhances the quality of generated audio samples, achieving better performance than prior models. Moreover, it reduces the number of inference steps to ten steps almost without sacrificing performance.

View on arXiv
Comments on this paper