ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2406.09089
36
0

DiffPoGAN: Diffusion Policies with Generative Adversarial Networks for Offline Reinforcement Learning

13 June 2024
Xuemin Hu
Shen Li
Yingfen Xu
Bo Tang
Long Chen
ArXivPDFHTML
Abstract

Offline reinforcement learning (RL) can learn optimal policies from pre-collected offline datasets without interacting with the environment, but the sampled actions of the agent cannot often cover the action distribution under a given state, resulting in the extrapolation error issue. Recent works address this issue by employing generative adversarial networks (GANs). However, these methods often suffer from insufficient constraints on policy exploration and inaccurate representation of behavior policies. Moreover, the generator in GANs fails in fooling the discriminator while maximizing the expected returns of a policy. Inspired by the diffusion, a generative model with powerful feature expressiveness, we propose a new offline RL method named Diffusion Policies with Generative Adversarial Networks (DiffPoGAN). In this approach, the diffusion serves as the policy generator to generate diverse distributions of actions, and a regularization method based on maximum likelihood estimation (MLE) is developed to generate data that approximate the distribution of behavior policies. Besides, we introduce an additional regularization term based on the discriminator output to effectively constrain policy exploration for policy improvement. Comprehensive experiments are conducted on the datasets for deep data-driven reinforcement learning (D4RL), and experimental results show that DiffPoGAN outperforms state-of-the-art methods in offline RL.

View on arXiv
Comments on this paper