ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2406.09141
18
0

Optimal Control of Agent-Based Dynamics under Deep Galerkin Feedback Laws

13 June 2024
Frederik Kelbel
ArXivPDFHTML
Abstract

Ever since the concepts of dynamic programming were introduced, one of the most difficult challenges has been to adequately address high-dimensional control problems. With growing dimensionality, the utilisation of Deep Neural Networks promises to circumvent the issue of an otherwise exponentially increasing complexity. The paper specifically investigates the sampling issues the Deep Galerkin Method is subjected to. It proposes a drift relaxation-based sampling approach to alleviate the symptoms of high-variance policy approximations. This is validated on mean-field control problems; namely, the variations of the opinion dynamics presented by the Sznajd and the Hegselmann-Krause model. The resulting policies induce a significant cost reduction over manually optimised control functions and show improvements on the Linear-Quadratic Regulator problem over the Deep FBSDE approach.

View on arXiv
Comments on this paper