ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2406.10218
32
3

Semantic Membership Inference Attack against Large Language Models

14 June 2024
Hamid Mozaffari
Virendra J. Marathe
    MIALM
ArXivPDFHTML
Abstract

Membership Inference Attacks (MIAs) determine whether a specific data point was included in the training set of a target model. In this paper, we introduce the Semantic Membership Inference Attack (SMIA), a novel approach that enhances MIA performance by leveraging the semantic content of inputs and their perturbations. SMIA trains a neural network to analyze the target model's behavior on perturbed inputs, effectively capturing variations in output probability distributions between members and non-members. We conduct comprehensive evaluations on the Pythia and GPT-Neo model families using the Wikipedia dataset. Our results show that SMIA significantly outperforms existing MIAs; for instance, SMIA achieves an AUC-ROC of 67.39% on Pythia-12B, compared to 58.90% by the second-best attack.

View on arXiv
Comments on this paper