ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2406.11070
18
1

Fine-grained Classes and How to Find Them

16 June 2024
Matej Grcić
Artyom Gadetsky
Maria Brbić
ArXivPDFHTML
Abstract

In many practical applications, coarse-grained labels are readily available compared to fine-grained labels that reflect subtle differences between classes. However, existing methods cannot leverage coarse labels to infer fine-grained labels in an unsupervised manner. To bridge this gap, we propose FALCON, a method that discovers fine-grained classes from coarsely labeled data without any supervision at the fine-grained level. FALCON simultaneously infers unknown fine-grained classes and underlying relationships between coarse and fine-grained classes. Moreover, FALCON is a modular method that can effectively learn from multiple datasets labeled with different strategies. We evaluate FALCON on eight image classification tasks and a single-cell classification task. FALCON outperforms baselines by a large margin, achieving 22% improvement over the best baseline on the tieredImageNet dataset with over 600 fine-grained classes.

View on arXiv
Comments on this paper