ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2406.11786
21
0

A Brief Survey on Leveraging Large Scale Vision Models for Enhanced Robot Grasping

17 June 2024
Abhi Kamboj
Katherine Driggs-Campbell
ArXivPDFHTML
Abstract

Robotic grasping presents a difficult motor task in real-world scenarios, constituting a major hurdle to the deployment of capable robots across various industries. Notably, the scarcity of data makes grasping particularly challenging for learned models. Recent advancements in computer vision have witnessed a growth of successful unsupervised training mechanisms predicated on massive amounts of data sourced from the Internet, and now nearly all prominent models leverage pretrained backbone networks. Against this backdrop, we begin to investigate the potential benefits of large-scale visual pretraining in enhancing robot grasping performance. This preliminary literature review sheds light on critical challenges and delineates prospective directions for future research in visual pretraining for robotic manipulation.

View on arXiv
Comments on this paper