ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2406.11850
35
0

Closed-loop Teaching via Demonstrations to Improve Policy Transparency

1 April 2024
Michael S. Lee
Reid G. Simmons
H. Admoni
ArXivPDFHTML
Abstract

Demonstrations are a powerful way of increasing the transparency of AI policies. Though informative demonstrations may be selected a priori through the machine teaching paradigm, student learning may deviate from the preselected curriculum in situ. This paper thus explores augmenting a curriculum with a closed-loop teaching framework inspired by principles from the education literature, such as the zone of proximal development and the testing effect. We utilize tests accordingly to close to the loop and maintain a novel particle filter model of human beliefs throughout the learning process, allowing us to provide demonstrations that are targeted to the human's current understanding in real time. A user study finds that our proposed closed-loop teaching framework reduces the regret in human test responses by 43% over a baseline.

View on arXiv
Comments on this paper