ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2406.11889
21
1

Hyperdimensional Quantum Factorization

13 June 2024
Prathyush P. Poduval
Zhuowen Zou
Alvaro Velasquez
Mohsen Imani
ArXivPDFHTML
Abstract

This paper presents a quantum algorithm for efficiently decoding hypervectors, a crucial process in extracting atomic elements from hypervectors - an essential task in Hyperdimensional Computing (HDC) models for interpretable learning and information retrieval. HDC employs high-dimensional vectors and efficient operators to encode and manipulate information, representing complex objects from atomic concepts. When one attempts to decode a hypervector that is the product (binding) of multiple hypervectors, the factorization becomes prohibitively costly with classical optimization-based methods and specialized recurrent networks, an inherent consequence of the binding operation. We propose HDQF, an innovative quantum computing approach, to address this challenge. By exploiting parallels between HDC and quantum computing and capitalizing on quantum algorithms' speedup capabilities, HDQF encodes potential factors as a quantum superposition using qubit states and bipolar vector representation. This yields a quadratic speedup over classical search methods and effectively mitigates Hypervector Factorization capacity issues.

View on arXiv
Comments on this paper