ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2406.13155
22
62

Convolutional Kolmogorov-Arnold Networks

19 June 2024
Alexander Dylan Bodner
Antonio Santiago Tepsich
Jack Natan Spolski
Santiago Pourteau
ArXivPDFHTML
Abstract

In this paper, we present Convolutional Kolmogorov-Arnold Networks, a novel architecture that integrates the learnable spline-based activation functions of Kolmogorov-Arnold Networks (KANs) into convolutional layers. By replacing traditional fixed-weight kernels with learnable non-linear functions, Convolutional KANs offer a significant improvement in parameter efficiency and expressive power over standard Convolutional Neural Networks (CNNs). We empirically evaluate Convolutional KANs on the Fashion-MNIST dataset, demonstrating competitive accuracy with up to 50% fewer parameters compared to baseline classic convolutions. This suggests that the KAN Convolution can effectively capture complex spatial relationships with fewer resources, offering a promising alternative for parameter-efficient deep learning models.

View on arXiv
@article{bodner2025_2406.13155,
  title={ Convolutional Kolmogorov-Arnold Networks },
  author={ Alexander Dylan Bodner and Antonio Santiago Tepsich and Jack Natan Spolski and Santiago Pourteau },
  journal={arXiv preprint arXiv:2406.13155},
  year={ 2025 }
}
Comments on this paper