ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2406.13281
40
0

ECAFormer: Low-light Image Enhancement using Cross Attention

19 June 2024
Yudi Ruan
Hao Ma
Weikai Li
Xiao Wang
ArXivPDFHTML
Abstract

Low-light image enhancement (LLIE) is critical in computer vision. Existing LLIE methods often fail to discover the underlying relationships between different sub-components, causing the loss of complementary information between multiple modules and network layers, ultimately resulting in the loss of image details. To beat this shortage, we design a hierarchical mutual Enhancement via a Cross Attention transformer (ECAFormer), which introduces an architecture that enables concurrent propagation and interaction of multiple features. The model preserves detailed information by introducing a Dual Multi-head self-attention (DMSA), which leverages visual and semantic features across different scales, allowing them to guide and complement each other. Besides, a Cross-Scale DMSA block is introduced to capture the residual connection, integrating cross-layer information to further enhance image detail. Experimental results show that ECAFormer reaches competitive performance across multiple benchmarks, yielding nearly a 3% improvement in PSNR over the suboptimal method, demonstrating the effectiveness of information interaction in LLIE.

View on arXiv
Comments on this paper