ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2406.14912
  4. Cited By
FC3DNet: A Fully Connected Encoder-Decoder for Efficient Demoiréing

FC3DNet: A Fully Connected Encoder-Decoder for Efficient Demoiréing

21 June 2024
Zhibo Du
Long Peng
Yang Wang
Yang Cao
Zheng-Jun Zha
    3DH
ArXivPDFHTML

Papers citing "FC3DNet: A Fully Connected Encoder-Decoder for Efficient Demoiréing"

2 / 2 papers shown
Title
Real-Time Single Image and Video Super-Resolution Using an Efficient
  Sub-Pixel Convolutional Neural Network
Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional Neural Network
Wenzhe Shi
Jose Caballero
Ferenc Huszár
J. Totz
Andrew P. Aitken
Rob Bishop
Daniel Rueckert
Zehan Wang
SupR
177
4,748
0
16 Sep 2016
U-Net: Convolutional Networks for Biomedical Image Segmentation
U-Net: Convolutional Networks for Biomedical Image Segmentation
Olaf Ronneberger
Philipp Fischer
Thomas Brox
SSeg
3DV
226
74,467
0
18 May 2015
1