114
v1v2 (latest)

Principled Feature Disentanglement for High-Fidelity Unified Brain MRI Synthesis

Main:12 Pages
9 Figures
Bibliography:2 Pages
5 Tables
Abstract

Multisequence Magnetic Resonance Imaging (MRI) provides a more reliable diagnosis in clinical applications through complementary information across sequences. However, in practice, the absence of certain MR sequences is a common problem that can lead to inconsistent analysis results. In this work, we propose a novel unified framework for synthesizing multisequence MR images, called hybrid-fusion GAN (HF-GAN). The fundamental mechanism of this work is principled feature disentanglement, which aligns the design of the architecture with the complexity of the features. A powerful many-to-one stream is constructed for the extraction of complex complementary features, while utilizing parallel, one-to-one streams to process modality-specific information. These disentangled features are dynamically integrated into a common latent space by a channel attention-based fusion module (CAFF) and then transformed via a modality infuser to generate the target sequence. We validated our framework on public datasets of both healthy and pathological brain MRI. Quantitative and qualitative results show that HF-GAN achieves state-of-the-art performance, with our 2D slice-based framework notably outperforming a leading 3D volumetric model. Furthermore, the utilization of HF-GAN for data imputation substantially improves the performance of the downstream brain tumor segmentation task, demonstrating its clinical relevance.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.