ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2406.15649
22
0

Efficient Human Pose Estimation: Leveraging Advanced Techniques with MediaPipe

21 June 2024
S. S. Sengar
Abhishek Kumar
Owen Singh
    3DH
    MedIm
ArXivPDFHTML
Abstract

This study presents significant enhancements in human pose estimation using the MediaPipe framework. The research focuses on improving accuracy, computational efficiency, and real-time processing capabilities by comprehensively optimising the underlying algorithms. Novel modifications are introduced that substantially enhance pose estimation accuracy across challenging scenarios, such as dynamic movements and partial occlusions. The improved framework is benchmarked against traditional models, demonstrating considerable precision and computational speed gains. The advancements have wide-ranging applications in augmented reality, sports analytics, and healthcare, enabling more immersive experiences, refined performance analysis, and advanced patient monitoring. The study also explores the integration of these enhancements within mobile and embedded systems, addressing the need for computational efficiency and broader accessibility. The implications of this research set a new benchmark for real-time human pose estimation technologies and pave the way for future innovations in the field. The implementation code for the paper is available at https://github.com/avhixd/Human_pose_estimation.

View on arXiv
Comments on this paper