ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2406.15725
24
3

Self Training and Ensembling Frequency Dependent Networks with Coarse Prediction Pooling and Sound Event Bounding Boxes

22 June 2024
Hyeonuk Nam
D. Min
Seungdeok Choi
Inhan Choi
Yong-Hwa Park
ArXivPDFHTML
Abstract

To tackle sound event detection (SED) task, we propose frequency dependent networks (FreDNets), which heavily leverage frequency-dependent methods. We apply frequency warping and FilterAugment, which are frequency-dependent data augmentation methods. The model architecture consists of 3 branches: audio teacher-student transformer (ATST) branch, BEATs branch and CNN branch including either partial dilated frequency dynamic convolution (PDFD) or squeeze-and-Excitation (SE) with time-frame frequency-wise SE (tfwSE). To train MAESTRO labels with coarse temporal resolution, we apply max pooling on prediction for the MAESTRO dataset. Using best ensemble model, we apply self training to obtain pseudo label from DESED weak set, DESED unlabeled set and AudioSet. AudioSet labels are filtered to focus on high-confidence pseudo labels and AudioSet pseudo labels are used to train on DESED labels only. We used change-detection-based sound event bounding boxes (cSEBBs) as post processing for ensemble models on self training and submission models.

View on arXiv
Comments on this paper