ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2406.16221
23
3

F-FOMAML: GNN-Enhanced Meta-Learning for Peak Period Demand Forecasting with Proxy Data

23 June 2024
Zexing Xu
Linjun Zhang
Sitan Yang
Rasoul Etesami
Hanghang Tong
Huan Zhang
Jiawei Han
    AI4TS
ArXivPDFHTML
Abstract

Demand prediction is a crucial task for e-commerce and physical retail businesses, especially during high-stake sales events. However, the limited availability of historical data from these peak periods poses a significant challenge for traditional forecasting methods. In this paper, we propose a novel approach that leverages strategically chosen proxy data reflective of potential sales patterns from similar entities during non-peak periods, enriched by features learned from a graph neural networks (GNNs)-based forecasting model, to predict demand during peak events. We formulate the demand prediction as a meta-learning problem and develop the Feature-based First-Order Model-Agnostic Meta-Learning (F-FOMAML) algorithm that leverages proxy data from non-peak periods and GNN-generated relational metadata to learn feature-specific layer parameters, thereby adapting to demand forecasts for peak events. Theoretically, we show that by considering domain similarities through task-specific metadata, our model achieves improved generalization, where the excess risk decreases as the number of training tasks increases. Empirical evaluations on large-scale industrial datasets demonstrate the superiority of our approach. Compared to existing state-of-the-art models, our method demonstrates a notable improvement in demand prediction accuracy, reducing the Mean Absolute Error by 26.24% on an internal vending machine dataset and by 1.04% on the publicly accessible JD.com dataset.

View on arXiv
Comments on this paper