ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2406.16356
19
0

Evaluation of Instruction-Following Ability for Large Language Models on Story-Ending Generation

24 June 2024
Rem Hida
Junki Ohmura
Toshiyuki Sekiya
    ELM
ArXivPDFHTML
Abstract

Instruction-tuned Large Language Models (LLMs) have achieved remarkable performance across various benchmark tasks. While providing instructions to LLMs for guiding their generations is user-friendly, assessing their instruction-following capabilities is still unclarified due to a lack of evaluation metrics. In this paper, we focus on evaluating the instruction-following ability of LLMs in the context of story-ending generation, which requires diverse and context-specific instructions. We propose an automatic evaluation pipeline that utilizes a machine reading comprehension (MRC) model to determine whether the generated story-ending reflects instruction. Our findings demonstrate that our proposed metric aligns with human evaluation. Furthermore, our experiments confirm that recent open-source LLMs can achieve instruction-following performance close to GPT-3.5, as assessed through automatic evaluation.

View on arXiv
Comments on this paper