ammBoost: State Growth Control for AMMs

Automated market makers (AMMs) are a prime example of Web 3.0 applications. Their popularity and high trading activity led to serious scalability issues in terms of throughput and state size. In this paper, we address these challenges by utilizing a new sidechain architecture, building a system called ammBoost. ammBoost reduces the amount of on-chain transactions, boosts throughput, and supports blockchain pruning. We devise several techniques to enable layer 2 processing for AMMs, including a functionality-split and layer 2 traffic summarization paradigm, an epoch-based deposit mechanism, and pool snapshot-based and delayed token-payout trading. We also build a proof-of-concept for a Uniswap-inspired use case to empirically evaluate performance. Our experiments show that ammBoost decreases the gas cost by 96.05% and the chain growth by at least 93.42%, and that it can support up to 500x of the daily traffic volume of Uniswap. We also compare ammBoost to an Optimism-inspired solution showing a 99.94% reduction in transaction finality.
View on arXiv@article{michel2025_2406.17094, title={ ammBoost: State Growth Control for AMMs }, author={ Nicolas Michel and Mohamed E. Najd and Ghada Almashaqbeh }, journal={arXiv preprint arXiv:2406.17094}, year={ 2025 } }