ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2406.17102
27
5

Achieving Fairness Across Local and Global Models in Federated Learning

24 June 2024
Disha Makhija
Xing Han
Joydeep Ghosh
Yejin Kim
    FedML
ArXivPDFHTML
Abstract

Achieving fairness across diverse clients in Federated Learning (FL) remains a significant challenge due to the heterogeneity of the data and the inaccessibility of sensitive attributes from clients' private datasets. This study addresses this issue by introducing \texttt{EquiFL}, a novel approach designed to enhance both local and global fairness in federated learning environments. \texttt{EquiFL} incorporates a fairness term into the local optimization objective, effectively balancing local performance and fairness. The proposed coordination mechanism also prevents bias from propagating across clients during the collaboration phase. Through extensive experiments across multiple benchmarks, we demonstrate that \texttt{EquiFL} not only strikes a better balance between accuracy and fairness locally at each client but also achieves global fairness. The results also indicate that \texttt{EquiFL} ensures uniform performance distribution among clients, thus contributing to performance fairness. Furthermore, we showcase the benefits of \texttt{EquiFL} in a real-world distributed dataset from a healthcare application, specifically in predicting the effects of treatments on patients across various hospital locations.

View on arXiv
Comments on this paper