ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2406.17232
19
10

Beyond Demographics: Aligning Role-playing LLM-based Agents Using Human Belief Networks

25 June 2024
Yun-Shiuan Chuang
Zach Studdiford
Krirk Nirunwiroj
Agam Goyal
Vincent V. Frigo
Sijia Yang
Dhavan Shah
Junjie Hu
Timothy T. Rogers
    AI4CE
ArXivPDFHTML
Abstract

Creating human-like large language model (LLM) agents is crucial for faithful social simulation. Having LLMs role-play based on demographic information sometimes improves human likeness but often does not. This study assessed whether LLM alignment with human behavior can be improved by integrating information from empirically-derived human belief networks. Using data from a human survey, we estimated a belief network encompassing 18 topics loading on two non-overlapping latent factors. We then seeded LLM-based agents with an opinion on one topic, and assessed the alignment of its expressed opinions on remaining test topics with corresponding human data. Role-playing based on demographic information alone did not align LLM and human opinions, but seeding the agent with a single belief greatly improved alignment for topics related in the belief network, and not for topics outside the network. These results suggest a novel path for human-LLM belief alignment in work seeking to simulate and understand patterns of belief distributions in society.

View on arXiv
Comments on this paper