ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2406.17916
11
3

Camera Model Identification Using Audio and Visual Content from Videos

25 June 2024
Ioannis Tsingalis
Christos Korgialas
C. Kotropoulos
ArXivPDFHTML
Abstract

The identification of device brands and models plays a pivotal role in the realm of multimedia forensic applications. This paper presents a framework capable of identifying devices using audio, visual content, or a fusion of them. The fusion of visual and audio content occurs later by applying two fundamental fusion rules: the product and the sum. The device identification problem is tackled as a classification one by leveraging Convolutional Neural Networks. Experimental evaluation illustrates that the proposed framework exhibits promising classification performance when independently using audio or visual content. Furthermore, although the fusion results don't consistently surpass both individual modalities, they demonstrate promising potential for enhancing classification performance. Future research could refine the fusion process to improve classification performance in both modalities consistently. Finally, a statistical significance test is performed for a more in-depth study of the classification results.

View on arXiv
Comments on this paper