ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2406.19579
30
4

Private Zeroth-Order Nonsmooth Nonconvex Optimization

27 June 2024
Qinzi Zhang
Hoang Tran
Ashok Cutkosky
ArXivPDFHTML
Abstract

We introduce a new zeroth-order algorithm for private stochastic optimization on nonconvex and nonsmooth objectives. Given a dataset of size MMM, our algorithm ensures (α,αρ2/2)(\alpha,\alpha\rho^2/2)(α,αρ2/2)-R\ényi differential privacy and finds a (δ,ϵ)(\delta,\epsilon)(δ,ϵ)-stationary point so long as M=Ω~(dδϵ3+d3/2ρδϵ2)M=\tilde\Omega\left(\frac{d}{\delta\epsilon^3} + \frac{d^{3/2}}{\rho\delta\epsilon^2}\right)M=Ω~(δϵ3d​+ρδϵ2d3/2​). This matches the optimal complexity of its non-private zeroth-order analog. Notably, although the objective is not smooth, we have privacy ``for free'' whenever ρ≥dϵ\rho \ge \sqrt{d}\epsilonρ≥d​ϵ.

View on arXiv
Comments on this paper