ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2407.00033
29
0

Uncovering cognitive taskonomy through transfer learning in masked autoencoder-based fMRI reconstruction

24 May 2024
Youzhi Qu
Junfeng Xia
Xinyao Jian
Wendu Li
Kaining Peng
Zhichao Liang
Haiyan Wu
Quanying Liu
ArXivPDFHTML
Abstract

Data reconstruction is a widely used pre-training task to learn the generalized features for many downstream tasks. Although reconstruction tasks have been applied to neural signal completion and denoising, neural signal reconstruction is less studied. Here, we employ the masked autoencoder (MAE) model to reconstruct functional magnetic resonance imaging (fMRI) data, and utilize a transfer learning framework to obtain the cognitive taskonomy, a matrix to quantify the similarity between cognitive tasks. Our experimental results demonstrate that the MAE model effectively captures the temporal dynamics patterns and interactions within the brain regions, enabling robust cross-subject fMRI signal reconstruction. The cognitive taskonomy derived from the transfer learning framework reveals the relationships among cognitive tasks, highlighting subtask correlations within motor tasks and similarities between emotion, social, and gambling tasks. Our study suggests that the fMRI reconstruction with MAE model can uncover the latent representation and the obtained taskonomy offers guidance for selecting source tasks in neural decoding tasks for improving the decoding performance on target tasks.

View on arXiv
Comments on this paper