ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2407.01137
16
3

An Empirical Comparison of Generative Approaches for Product Attribute-Value Identification

1 July 2024
Kassem Sabeh
Robert Litschko
Mouna Kacimi
Barbara Plank
J. Gamper
ArXivPDFHTML
Abstract

Product attributes are crucial for e-commerce platforms, supporting applications like search, recommendation, and question answering. The task of Product Attribute and Value Identification (PAVI) involves identifying both attributes and their values from product information. In this paper, we formulate PAVI as a generation task and provide, to the best of our knowledge, the most comprehensive evaluation of PAVI so far. We compare three different attribute-value generation (AVG) strategies based on fine-tuning encoder-decoder models on three datasets. Experiments show that end-to-end AVG approach, which is computationally efficient, outperforms other strategies. However, there are differences depending on model sizes and the underlying language model. The code to reproduce all experiments is available at: https://github.com/kassemsabeh/pavi-avg

View on arXiv
Comments on this paper