ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2407.01424
47
5

A Global-Local Attention Mechanism for Relation Classification

1 July 2024
Yiping Sun
ArXivPDFHTML
Abstract

Relation classification, a crucial component of relation extraction, involves identifying connections between two entities. Previous studies have predominantly focused on integrating the attention mechanism into relation classification at a global scale, overlooking the importance of the local context. To address this gap, this paper introduces a novel global-local attention mechanism for relation classification, which enhances global attention with a localized focus. Additionally, we propose innovative hard and soft localization mechanisms to identify potential keywords for local attention. By incorporating both hard and soft localization strategies, our approach offers a more nuanced and comprehensive understanding of the contextual cues that contribute to effective relation classification. Our experimental results on the SemEval-2010 Task 8 dataset highlight the superior performance of our method compared to previous attention-based approaches in relation classification.

View on arXiv
Comments on this paper