ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2407.02318
16
0

The Solution for Temporal Sound Localisation Task of ICCV 1st Perception Test Challenge 2023

1 July 2024
Yurui Huang
Yang Yang
Shou Chen
Xiangyu Wu
Qingguo Chen
Jianfeng Lu
ArXivPDFHTML
Abstract

In this paper, we propose a solution for improving the quality of temporal sound localization. We employ a multimodal fusion approach to combine visual and audio features. High-quality visual features are extracted using a state-of-the-art self-supervised pre-training network, resulting in efficient video feature representations. At the same time, audio features serve as complementary information to help the model better localize the start and end of sounds. The fused features are trained in a multi-scale Transformer for training. In the final test dataset, we achieved a mean average precision (mAP) of 0.33, obtaining the second-best performance in this track.

View on arXiv
Comments on this paper