ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2407.02357
16
1

Contrastive independent component analysis

2 July 2024
Kexin Wang
Aida Maraj
A. Seigal
    CML
ArXivPDFHTML
Abstract

Visualizing data and finding patterns in data are ubiquitous problems in the sciences. Increasingly, applications seek signal and structure in a contrastive setting: a foreground dataset relative to a background dataset. For this purpose, we propose contrastive independent component analysis (cICA). This generalizes independent component analysis to independent latent variables across a foreground and background. We propose a hierarchical tensor decomposition algorithm for cICA. We study the identifiability of cICA and demonstrate its performance visualizing data and finding patterns in data, using synthetic and real-world datasets, comparing the approach to existing contrastive methods.

View on arXiv
Comments on this paper