ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2407.02793
37
2

Learning Positional Attention for Sequential Recommendation

3 July 2024
Fan Luo
Juan Zhang
Shenghui Xu
ArXiv (abs)PDFHTML
Abstract

Self-attention-based networks have achieved remarkable performance in sequential recommendation tasks. A crucial component of these models is positional encoding. In this study, we delve into the learned positional embedding, demonstrating that it often captures the distance between tokens. Building on this insight, we introduce novel attention models that directly learn positional relations. Extensive experiments reveal that our proposed models, \textbf{PARec} and \textbf{FPARec} outperform previous self-attention-based approaches.Our code is available at the link for anonymous review: https://anonymous.4open.science/ r/FPARec-2C55/

View on arXiv
Comments on this paper