ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2407.03993
18
5

A Survey on Natural Language Counterfactual Generation

4 July 2024
Yongjie Wang
Xiaoqi Qiu
Yu Yue
Xu Guo
Zhiwei Zeng
Yuhong Feng
Zhiqi Shen
ArXivPDFHTML
Abstract

Natural Language Counterfactual generation aims to minimally modify a given text such that the modified text will be classified into a different class. The generated counterfactuals provide insight into the reasoning behind a model's predictions by highlighting which words significantly influence the outcomes. Additionally, they can be used to detect model fairness issues or augment the training data to enhance the model's robustness. A substantial amount of research has been conducted to generate counterfactuals for various NLP tasks, employing different models and methodologies. With the rapid growth of studies in this field, a systematic review is crucial to guide future researchers and developers. To bridge this gap, this survey comprehensively overview textual counterfactual generation methods, particularly including those based on Large Language Models. We propose a new taxonomy that categorizes the generation methods into four groups and systematically summarize the metrics for evaluating the generation quality. Finally, we discuss ongoing research challenges and outline promising directions for future work.

View on arXiv
Comments on this paper