ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2407.06337
13
0

GeoWATCH for Detecting Heavy Construction in Heterogeneous Time Series of Satellite Images

8 July 2024
Jon Crall
Connor Greenwell
David Joy
Matthew J. Leotta
Aashish Chaudhary
A. Hoogs
    AI4TS
ArXivPDFHTML
Abstract

Learning from multiple sensors is challenging due to spatio-temporal misalignment and differences in resolution and captured spectra. To that end, we introduce GeoWATCH, a flexible framework for training models on long sequences of satellite images sourced from multiple sensor platforms, which is designed to handle image classification, activity recognition, object detection, or object tracking tasks. Our system includes a novel partial weight loading mechanism based on sub-graph isomorphism which allows for continually training and modifying a network over many training cycles. This has allowed us to train a lineage of models over a long period of time, which we have observed has improved performance as we adjust configurations while maintaining a core backbone.

View on arXiv
Comments on this paper