ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2407.06590
65
4

Revolutionizing Battery Disassembly: The Design and Implementation of a Battery Disassembly Autonomous Mobile Manipulator Robot(BEAM-1)

9 July 2024
Yanlong Peng
Zhigang Wang
Yisheng Zhang
Shengmin Zhang
Nan Cai
Fan Wu
Ming Chen
ArXiv (abs)PDFHTML
Abstract

The efficient disassembly of end-of-life electric vehicle batteries(EOL-EVBs) is crucial for green manufacturing and sustainable development. The current pre-programmed disassembly conducted by the Autonomous Mobile Manipulator Robot(AMMR) struggles to meet the disassembly requirements in dynamic environments, complex scenarios, and unstructured processes. In this paper, we propose a Battery Disassembly AMMR(BEAM-1) system based on NeuralSymbolic AI. It detects the environmental state by leveraging a combination of multi-sensors and neural predicates and then translates this information into a quasi-symbolic space. In real-time, it identifies the optimal sequence of action primitives through LLM-heuristic tree search, ensuring high-precision execution of these primitives. Additionally, it employs positional speculative sampling using intuitive networks and achieves the disassembly of various bolt types with a meticulously designed end-effector. Importantly, BEAM-1 is a continuously learning embodied intelligence system capable of subjective reasoning like a human, and possessing intuition. A large number of real scene experiments have proved that it can autonomously perceive, decide, and execute to complete the continuous disassembly of bolts in multiple, multi-category, and complex situations, with a success rate of 98.78%. This research attempts to use NeuroSymbolic AI to give robots real autonomous reasoning, planning, and learning capabilities. BEAM-1 realizes the revolution of battery disassembly. Its framework can be easily ported to any robotic system to realize different application scenarios, which provides a ground-breaking idea for the design and implementation of future embodied intelligent robotic systems.

View on arXiv
Comments on this paper