ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2407.07365
43
0

High-Resolution Cloud Detection Network

10 July 2024
Jingsheng Li
Tianxiang Xue
Jiayi Zhao
Jingmin Ge
Yufang Min
Wei Su
Kun Zhan
ArXivPDFHTML
Abstract

The complexity of clouds, particularly in terms of texture detail at high resolutions, has not been well explored by most existing cloud detection networks. This paper introduces the High-Resolution Cloud Detection Network (HR-cloud-Net), which utilizes a hierarchical high-resolution integration approach. HR-cloud-Net integrates a high-resolution representation module, layer-wise cascaded feature fusion module, and multi-resolution pyramid pooling module to effectively capture complex cloud features. This architecture preserves detailed cloud texture information while facilitating feature exchange across different resolutions, thereby enhancing overall performance in cloud detection. Additionally, a novel approach is introduced wherein a student view, trained on noisy augmented images, is supervised by a teacher view processing normal images. This setup enables the student to learn from cleaner supervisions provided by the teacher, leading to improved performance. Extensive evaluations on three optical satellite image cloud detection datasets validate the superior performance of HR-cloud-Net compared to existing methods.The source code is available at \url{https://github.com/kunzhan/HR-cloud-Net}.

View on arXiv
Comments on this paper