ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2407.08830
18
0

Counting NNN Queens

11 July 2024
Nick Polson
Vadim Sokolov
ArXiv (abs)PDFHTML
Abstract

Gauss proposed the problem of how to enumerate the number of solutions for placing NNN queens on an N×NN\times NN×N chess board, so no two queens attack each other. The N-queen problem is a classic problem in combinatorics. We describe a variety of Monte Carlo (MC) methods for counting the number of solutions. In particular, we propose a quantile re-ordering based on the Lorenz curve of a sum that is related to counting the number of solutions. We show his approach leads to an efficient polynomial-time solution. Other MC methods include vertical likelihood Monte Carlo, importance sampling, slice sampling, simulated annealing, energy-level sampling, and nested-sampling. Sampling binary matrices that identify the locations of the queens on the board can be done with a Swendsen-Wang style algorithm. Our Monte Carlo approach counts the number of solutions in polynomial time.

View on arXiv
Comments on this paper