Video Occupancy Models
Manan Tomar
Philippe Hansen-Estruch
Philip Bachman
Alex Lamb
John Langford
Matthew E. Taylor
Sergey Levine

Abstract
We introduce a new family of video prediction models designed to support downstream control tasks. We call these models Video Occupancy models (VOCs). VOCs operate in a compact latent space, thus avoiding the need to make predictions about individual pixels. Unlike prior latent-space world models, VOCs directly predict the discounted distribution of future states in a single step, thus avoiding the need for multistep roll-outs. We show that both properties are beneficial when building predictive models of video for use in downstream control. Code is available at \href{https://github.com/manantomar/video-occupancy-models}{\texttt{github.com/manantomar/video-occupancy-models}}.
View on arXivComments on this paper