ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2407.09590
25
9

Diversifying the Expert Knowledge for Task-Agnostic Pruning in Sparse Mixture-of-Experts

12 July 2024
Zeliang Zhang
Xiaodong Liu
Hao Cheng
Chenliang Xu
Jianfeng Gao
    MoE
ArXivPDFHTML
Abstract

By increasing model parameters but activating them sparsely when performing a task, the use of Mixture-of-Experts (MoE) architecture significantly improves the performance of Large Language Models (LLMs) without increasing the inference cost. However, the memory consumption due to the growing number of experts presents a challenge to the deployment of these models in many real world settings. Our empirical study reveals that some experts encode redundant knowledge during pre-training. We thus propose a method of grouping and pruning similar experts to improve model's parameter efficiency. We validate the effectiveness of our method by pruning two state-of-the-art MoE models, Mixtral-8x7B and Mixtral-8x22B. Evaluation shows that our method outperforms other model pruning methods on a range of natural language tasks. To facilitate future research, we will release our code and the pruned MoE models.

View on arXiv
Comments on this paper