ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2407.10259
31
0

Towards detailed and interpretable hybrid modeling of continental-scale bird migration

14 July 2024
Fiona Lippert
Bart Kranstauber
Patrick Forré
E. E. V. Loon
ArXivPDFHTML
Abstract

Hybrid modeling aims to augment traditional theory-driven models with machine learning components that learn unknown parameters, sub-models or correction terms from data. In this work, we build on FluxRGNN, a recently developed hybrid model of continental-scale bird migration, which combines a movement model inspired by fluid dynamics with recurrent neural networks that capture the complex decision-making processes of birds. While FluxRGNN has been shown to successfully predict key migration patterns, its spatial resolution is constrained by the typically sparse observations obtained from weather radars. Additionally, its trainable components lack explicit incentives to adequately predict take-off and landing events. Both aspects limit our ability to interpret model results ecologically. To address this, we propose two major modifications that allow for more detailed predictions on any desired tessellation while providing control over the interpretability of model components. In experiments on the U.S. weather radar network, the enhanced model effectively leverages the underlying movement model, resulting in strong extrapolation capabilities to unobserved locations.

View on arXiv
Comments on this paper