ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2407.10283
20
0

Numbers Matter! Bringing Quantity-awareness to Retrieval Systems

14 July 2024
Satya Almasian
Milena Bruseva
Michael Gertz
ArXivPDFHTML
Abstract

Quantitative information plays a crucial role in understanding and interpreting the content of documents. Many user queries contain quantities and cannot be resolved without understanding their semantics, e.g., ``car that costs less than 10k′′.Yet,modernsearchenginesapplythesamerankingmechanismsforbothwordsandquantities,overlookingmagnitudeandunitinformation.Inthispaper,weintroducetwoquantity−awarerankingtechniquesdesignedtorankboththequantityandtextualcontenteitherjointlyorindependently.Thesetechniquesincorporatequantityinformationinavailableretrievalsystemsandcanaddressquerieswithnumericalconditionsequal,greaterthan,andlessthan.Toevaluatetheeffectivenessofourproposedmodels,weintroducetwonovelquantity−awarebenchmarkdatasetsinthedomainsoffinanceandmedicineandcompareourmethodagainstvariouslexicalandneuralmodels.Thecodeanddataareavailableunderhttps://github.com/satya77/QuantityAwareRankers.10k''. Yet, modern search engines apply the same ranking mechanisms for both words and quantities, overlooking magnitude and unit information. In this paper, we introduce two quantity-aware ranking techniques designed to rank both the quantity and textual content either jointly or independently. These techniques incorporate quantity information in available retrieval systems and can address queries with numerical conditions equal, greater than, and less than. To evaluate the effectiveness of our proposed models, we introduce two novel quantity-aware benchmark datasets in the domains of finance and medicine and compare our method against various lexical and neural models. The code and data are available under https://github.com/satya77/QuantityAwareRankers.10k′′.Yet,modernsearchenginesapplythesamerankingmechanismsforbothwordsandquantities,overlookingmagnitudeandunitinformation.Inthispaper,weintroducetwoquantity−awarerankingtechniquesdesignedtorankboththequantityandtextualcontenteitherjointlyorindependently.Thesetechniquesincorporatequantityinformationinavailableretrievalsystemsandcanaddressquerieswithnumericalconditionsequal,greaterthan,andlessthan.Toevaluatetheeffectivenessofourproposedmodels,weintroducetwonovelquantity−awarebenchmarkdatasetsinthedomainsoffinanceandmedicineandcompareourmethodagainstvariouslexicalandneuralmodels.Thecodeanddataareavailableunderhttps://github.com/satya77/QuantityAwareRankers.

View on arXiv
Comments on this paper