Quantitative information plays a crucial role in understanding and
interpreting the content of documents. Many user queries contain quantities and
cannot be resolved without understanding their semantics, e.g., ``car that
costs less than 10k′′.Yet,modernsearchenginesapplythesamerankingmechanismsforbothwordsandquantities,overlookingmagnitudeandunitinformation.Inthispaper,weintroducetwoquantity−awarerankingtechniquesdesignedtorankboththequantityandtextualcontenteitherjointlyorindependently.Thesetechniquesincorporatequantityinformationinavailableretrievalsystemsandcanaddressquerieswithnumericalconditionsequal,greaterthan,andlessthan.Toevaluatetheeffectivenessofourproposedmodels,weintroducetwonovelquantity−awarebenchmarkdatasetsinthedomainsoffinanceandmedicineandcompareourmethodagainstvariouslexicalandneuralmodels.Thecodeanddataareavailableunderhttps://github.com/satya77/QuantityAwareRankers.