ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2407.10424
42
22

CodeV: Empowering LLMs with HDL Generation through Multi-Level Summarization

15 July 2024
Yang Zhao
Di Huang
Chongxiao Li
Pengwei Jin
Ziyuan Nan
Tianyun Ma
Lei Qi
Yansong Pan
Zhenxing Zhang
Rui Zhang
Xishan Zhang
Zidong Du
Rui Zhang
Xingui Hu
Yunji Chen
Qi Guo
Xing Hu
ArXivPDFHTML
Abstract

The design flow of processors, particularly in hardware description languages (HDL) like Verilog and Chisel, is complex and costly. While recent advances in large language models (LLMs) have significantly improved coding tasks in software languages such as Python, their application in HDL generation remains limited due to the scarcity of high-quality HDL data. Traditional methods of adapting LLMs for hardware design rely on synthetic HDL datasets, which often suffer from low quality because even advanced LLMs like GPT perform poorly in the HDL domain. Moreover, these methods focus solely on chat tasks and the Verilog language, limiting their application scenarios.In this paper, we observe that: (1) HDL code collected from the real world is of higher quality than code generated by LLMs. (2) LLMs like GPT-3.5 excel in summarizing HDL code rather than generating it. (3) An explicit language tag can help LLMs better adapt to the target language when there is insufficient data. Based on these observations, we propose an efficient LLM fine-tuning pipeline for HDL generation that integrates a multi-level summarization data synthesis process with a novel Chat-FIM-Tag supervised fine-tuning method. The pipeline enhances the generation of HDL code from natural language descriptions and enables the handling of various tasks such as chat and infilling incomplete code. Utilizing this pipeline, we introduce CodeV, a series of HDL generation LLMs. Among them, CodeV-All not only possesses a more diverse range of language abilities, i.e. Verilog and Chisel, and a broader scope of tasks, i.e. Chat and fill-in-middle (FIM), but it also achieves performance on VerilogEval that is comparable to or even surpasses that of CodeV-Verilog fine-tuned on Verilog only, making them the first series of open-source LLMs designed for multi-scenario HDL generation.

View on arXiv
@article{zhao2025_2407.10424,
  title={ CodeV: Empowering LLMs with HDL Generation through Multi-Level Summarization },
  author={ Yang Zhao and Di Huang and Chongxiao Li and Pengwei Jin and Muxin Song and Yinan Xu and Ziyuan Nan and Mingju Gao and Tianyun Ma and Lei Qi and Yansong Pan and Zhenxing Zhang and Rui Zhang and Xishan Zhang and Zidong Du and Qi Guo and Xing Hu },
  journal={arXiv preprint arXiv:2407.10424},
  year={ 2025 }
}
Comments on this paper