ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2407.10856
21
0

Physics-Inspired Generative Models in Medical Imaging: A Review

15 July 2024
Dennis Hein
Afshin Bozorgpour
Dorit Merhof
Ge Wang
    DiffM
    MedIm
    AI4CE
ArXivPDFHTML
Abstract

Physics-inspired Generative Models (GMs), in particular Diffusion Models (DMs) and Poisson Flow Models (PFMs), enhance Bayesian methods and promise great utility in medical imaging. This review examines the transformative role of such generative methods. First, a variety of physics-inspired GMs, including Denoising Diffusion Probabilistic Models (DDPMs), Score-based Diffusion Models (SDMs), and Poisson Flow Generative Models (PFGMs and PFGM++), are revisited, with an emphasis on their accuracy, robustness as well as acceleration. Then, major applications of physics-inspired GMs in medical imaging are presented, comprising image reconstruction, image generation, and image analysis. Finally, future research directions are brainstormed, including unification of physics-inspired GMs, integration with Vision-Language Models (VLMs), and potential novel applications of GMs. Since the development of generative methods has been rapid, this review will hopefully give peers and learners a timely snapshot of this new family of physics-driven generative models and help capitalize their enormous potential for medical imaging.

View on arXiv
Comments on this paper