ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2407.11009
208
3

CharED: Character-wise Ensemble Decoding for Large Language Models

25 June 2024
Kevin Gu
Eva Tuecke
Dmitriy Katz
R. Horesh
David Alvarez-Melis
Mikhail Yurochkin
ArXiv (abs)PDFHTML
Abstract

Large language models (LLMs) have shown remarkable potential for problem solving, with open source models achieving increasingly impressive performance on benchmarks measuring areas from logical reasoning to mathematical ability. Ensembling models can further improve capabilities across a variety of domains. However, conventional methods of combining models at inference time such as shallow fusion necessitate a shared vocabulary and tokenization, and alternatives like fine-tuning for domain-specific performance are both time consuming and computationally expensive. We therefore present an inference-time ensembling algorithm aimed at "averaging" outputs from multiple LLMs and illustrate its improved performance across multiple domains compared to its constituent models alone. Character-wise ensemble decoding, CharED, finds the marginal distribution of each character for an individual model and performs a weighted average to generate an output, character by character. In coding, math, and toxicity benchmarks, we find our proposed model able to combine complimentary strengths of multiple LLMs, regardless of vocabulary, tokenization, or model size.

View on arXiv
Comments on this paper